Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.856
Filtrar
1.
Sci Rep ; 14(1): 7684, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561372

RESUMO

Peptide toxins found in sea anemones venom have diverse properties that make them important research subjects in the fields of pharmacology, neuroscience and biotechnology. This study used high-throughput sequencing technology to systematically analyze the venom components of the tentacles, column, and mesenterial filaments of sea anemone Heteractis crispa, revealing the diversity and complexity of sea anemone toxins in different tissues. A total of 1049 transcripts were identified and categorized into 60 families, of which 91.0% were proteins and 9.0% were peptides. Of those 1049 transcripts, 416, 291, and 307 putative proteins and peptide precursors were identified from tentacles, column, and mesenterial filaments respectively, while 428 were identified when the datasets were combined. Of these putative toxin sequences, 42 were detected in all three tissues, including 33 proteins and 9 peptides, with the majority of peptides being ShKT domain, ß-defensin, and Kunitz-type. In addition, this study applied bioinformatics approaches to predict the family classification, 3D structures, and functional annotation of these representative peptides, as well as the evolutionary relationships between peptides, laying the foundation for the next step of peptide pharmacological activity research.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Humanos , Anêmonas-do-Mar/metabolismo , Peptídeos/química , Perfilação da Expressão Gênica , Venenos de Cnidários/química
2.
Proc Natl Acad Sci U S A ; 121(11): e2317017121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457522

RESUMO

Fluorescent proteins (FPs) are ubiquitous tools in research, yet their endogenous functions in nature are poorly understood. In this work, we describe a combination of functions for FPs in a clade of intertidal sea anemones whose FPs control a genetic color polymorphism together with the ability to combat oxidative stress. Focusing on the underlying genetics of a fluorescent green "Neon" color morph, we show that allelic differences in a single FP gene generate its strong and vibrant color, by increasing both molecular brightness and FP gene expression level. Natural variation in FP sequences also produces differences in antioxidant capacity. We demonstrate that these FPs are strong antioxidants that can protect live cells against oxidative stress. Finally, based on structural modeling of the responsible amino acids, we propose a model for FP antioxidant function that is driven by molecular surface charge. Together, our findings shed light on the multifaceted functions that can co-occur within a single FP and provide a framework for studying the evolution of fluorescence as it balances spectral and physiological functions in nature.


Assuntos
Anêmonas-do-Mar , Animais , Proteínas Luminescentes/metabolismo , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Antioxidantes/metabolismo , Espectrometria de Fluorescência , Estresse Oxidativo/genética , Proteínas de Fluorescência Verde/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230079, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497261

RESUMO

Coral growth depends on the partnership between the animal hosts and their intracellular, photosynthetic dinoflagellate symbionts. In this study, we used the sea anemone Aiptasia, a laboratory model for coral biology, to investigate the poorly understood mechanisms that mediate symbiosis establishment and maintenance. We found that initial colonization of both adult polyps and larvae by a compatible algal strain was more effective when the algae were able to photosynthesize and that the long-term maintenance of the symbiosis also depended on photosynthesis. In the dark, algal cells were taken up into host gastrodermal cells and not rapidly expelled, but they seemed unable to reproduce and thus were gradually lost. When we used confocal microscopy to examine the interaction of larvae with two algal strains that cannot establish stable symbioses with Aiptasia, it appeared that both pre- and post-phagocytosis mechanisms were involved. With one strain, algae entered the gastric cavity but appeared to be completely excluded from the gastrodermal cells. With the other strain, small numbers of algae entered the gastrodermal cells but appeared unable to proliferate there and were slowly lost upon further incubation. We also asked if the exclusion of either incompatible strain could result simply from their cells' being too large for the host cells to accommodate. However, the size distributions of the compatible and incompatible strains overlapped extensively. Moreover, examination of macerates confirmed earlier reports that individual gastrodermal cells could expand to accommodate multiple algal cells. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Antozoários , Dinoflagelados , Anêmonas-do-Mar , Animais , Simbiose , Fotossíntese , Larva
4.
Mar Drugs ; 22(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535452

RESUMO

Sea anemone venom, abundant in protein and peptide toxins, serves primarily for predatory defense and competition. This study delves into the insulin-like peptides (ILPs) present in sea anemones, particularly focusing on their role in potentially inducing hypoglycemic shock in prey. We identified five distinct ILPs in Exaiptasia diaphana, exhibiting varied sequences. Among these, ILP-Ap04 was successfully synthesized using solid phase peptide synthesis (SPPS) to evaluate its hypoglycemic activity. When tested in zebrafish, ILP-Ap04 significantly reduced blood glucose levels in a model of diabetes induced by streptozotocin (STZ) and glucose, concurrently affecting the normal locomotor behavior of zebrafish larvae. Furthermore, molecular docking studies revealed ILP-Ap04's unique interaction with the human insulin receptor, characterized by a detailed hydrogen-bonding network, which supports a unique mechanism for its hypoglycemic effects. Our findings suggest that sea anemones have evolved sophisticated strategies to activate insulin receptors in vertebrates, providing innovative insights into the design of novel drugs for the treatment of diabetes.


Assuntos
Venenos de Cnidários , Diabetes Mellitus , Anêmonas-do-Mar , Humanos , Animais , Insulina , Hipoglicemiantes , Peixe-Zebra , Simulação de Acoplamento Molecular , 60515
5.
Mar Drugs ; 22(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535477

RESUMO

Recent studies have elucidated the diversity of genes encoding venom in Sea anemones. However, most of those genes are yet to be explored in an evolutionary context. Insulin is a common peptide across metazoans and has been coopted into a predatory venom in many venomous lineages. In this study, we focus on the diversity of insulin-derived venoms in Sea anemones and on elucidating their evolutionary history. We sourced data for 34 species of Sea anemones and found sequences belonging to two venom families which have Insulin PFAM annotations. Our findings show that both families have undergone duplication events. Members of each of the independently evolving clades have consistent predicted protein structures and distinct dN/dS values. Our work also shows that sequences allied with VP302 are part of a multidomain venom contig and have experienced a secondary gain into the venom system of cuticulate Sea anemones.


Assuntos
Insulina , Anêmonas-do-Mar , Humanos , Animais , Comportamento Predatório
6.
Dev Biol ; 510: 50-65, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521499

RESUMO

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Sistema Nervoso , Gastrulação/genética , Genes Homeobox
7.
Environ Sci Pollut Res Int ; 31(17): 26036-26051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491242

RESUMO

Bunodosoma zamponii is the most abundant anemone in Mar del Plata (Buenos Aires, Argentina). Given that the presence of persistent organic pollutants (organochlorine pesticides and PCBs) and the organophosphate pesticide chlorpyrifos has recently been reported in this species, two wild populations living under different anthropogenic pressures were studied and compared regarding basic aspects of their ecology and physiological response to oxidative stress. A population from an impacted site (Las Delicias, LD) and another from a reference site (Punta Cantera, PC) were monitored seasonally (spring, summer, autumn, and winter), for one year. Anemones from PC were larger and more abundant than those from LD for most sampling periods. During winter, glutathione-S-transferase and catalase activities were higher in LD. Moreover, protein content and antioxidant defenses were higher in anemones from PC during winter as well. Taking into account their ecology (size and abundance) and biomarker responses, the population from PC was comparatively healthier. Furthermore, such differences are in agreement with recent studies indicating a higher concentration of pollutants in anemones from LD (specially during the winter sampling). In this sense, considering that B. zamponii can bioaccumulate the aforementioned pollutants, its resilience to their presence, and the fact that biomarker response differed between sites, this species can be regarded as a proper sentinel species of environmental pollution. Overall, this anemone seems to be a good bioindicator to be considered in future biomonitoring and ecotoxicological studies.


Assuntos
Poluentes Ambientais , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Efeitos Antropogênicos , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Monitoramento Ambiental
8.
Mar Pollut Bull ; 201: 116287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547612

RESUMO

Specimens of the Mediterranean sea anemone Anemonia viridis were exposed to methylmercury (MeHg) and bacterial infection to study their immune responses to a well-known toxic pollutant. Anemones were housed in laboratory conditions and divided into five experimental groups: 1. control (no microinjection); 2. filtered seawater + buffer injection; 3. filtered seawater + Escherichia coli injection; 4. MeHg + buffer injection; 5. MeHg + E. coli injection. Data showed an increase in antioxidant enzyme production compared to the constitutive condition, while methylmercury inhibited lysozyme production. The buffer inoculation had no statistically significant effects on the animals. In addition, electrophoretic and protease analyses revealed differences in the type of proteins produced, as well as a modulation of proteases depending on the treatment. The study demonstrated the immunomodulatory effect of the organic pollutant on A. viridis, validating its use as a model organism for marine coastal biomonitoring programmes and multiple stress studies.


Assuntos
Infecções Bacterianas , Poluentes Ambientais , Compostos de Metilmercúrio , Anêmonas-do-Mar , Animais , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Anêmonas-do-Mar/fisiologia , Escherichia coli , Poluentes Ambientais/metabolismo
9.
Mar Environ Res ; 196: 106435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467089

RESUMO

Cnidarians may dominate benthic communities, as in the case of coral reefs that foster biodiversity and provide important ecosystem services. Polyps may feed by predating mesozooplantkon and large motile prey, but many species further obtain autotrophic nutrients from photosymbiosis. Anthropogenic disturbance, such as the rise of seawater temperature and turbidity, can lead to the loss of symbionts, causing bleaching. Prolonged periods of bleaching can induce mortality events over vast areas. Heterotrophy may allow bleached cnidarians to survive for long periods of time. We tested the reinforcement of heterotrophic feeding of bleached polyps of Exaiptasia diaphana fed with both small zooplantkon and large prey, in order to evaluate if heterotrophy allows this species to compensate the reduction of autotrophy. Conversely to expected, heterotrophy was higher in unbleached polyps (+54% mesozooplankton prey and +11% large prey). The increase of heterotrophic intake may not be always used as a strategy to compensate autotrophic depletion in bleached polyps. Such a resilience strategy might be more species-specific than expected.


Assuntos
Antozoários , Anêmonas-do-Mar , Animais , Ecossistema , Comportamento Predatório , Recifes de Corais , Simbiose
10.
Methods Mol Biol ; 2784: 59-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502478

RESUMO

The sea anemone Nematostella vectensis is a genetically tractable cnidarian species that has become a model organism for studying the evolution of developmental processes and genome regulation, resilience to fluctuations in environmental conditions, and the response to pollutants. Gene expression analyses are central to many of these studies, and in situ hybridization has been an important method for obtaining spatial information, in particular during embryonic development. Like other cnidarians, Nematostella embryos are of comparably low morphological complexity, but they possess many cell types that are dispersed throughout the tissue and originate from broad and overlapping areas. These features have made two-color fluorescence in situ hybridization an important method to determine potential co-expression of genes and to generate hypotheses for their functions in cell fate specification. We here share protocols for single and double fluorescence in situ hybridization in Nematostella and for the combination of fluorescence in situ hybridization and immunofluorescence.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Hibridização in Situ Fluorescente , Diferenciação Celular/genética , Desenvolvimento Embrionário
11.
Curr Biol ; 34(5): R193-R194, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471445

RESUMO

The symbiosis between giant sea anemones, algae of the family Symbiodiniaceae, and anemonefish is an iconic example of a mutualistic trio1,2. Molecular analyses have shown that giant sea anemones hosting anemonefish belong to three clades: Entacmaea, Stichodactyla, and Heteractis3,4,5 (Figure 1A). Associations among 28 species of anemonefish and 10 species of giant sea anemone hosts are complex. Some fish species are highly specialized to only one anemone species (e.g., Amphiprion frenatus with Entacmaea quadricolor), whereas others are more generalist (e.g., Amphiprion clarkii)1,2,6. Reasons for host preferences are obscured, among other things, by the lack of resolution in the giant sea anemone phylogeny. Here, we generated a transcriptomic dataset from 55 sea anemones collected from southern Japan to reconstruct these phylogenetic relationships. We observed that the bubble-tip sea anemone E. quadricolor, currently considered a single species, can be separated into at least four cryptic lineages (A-D). Surprisingly, these lineages can be precisely distinguished by observing their association with anemonefish: A. frenatus only associates with lineage D, whereas A. clarkii lives in the other three lineages.


Assuntos
Perciformes , Anêmonas-do-Mar , Humanos , Animais , Filogenia , Peixes , Simbiose
12.
Sci Adv ; 10(11): eadk3870, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478603

RESUMO

The ability of an animal to effectively capture prey and defend against predators is pivotal for survival. Venom is often a mixture of many components including toxin proteins that shape predator-prey interactions. Here, we used the sea anemone Nematostella vectensis to test the impact of toxin genotypes on predator-prey interactions. We developed a genetic manipulation technique to demonstrate that both transgenically deficient and a native Nematostella strain lacking a major neurotoxin (Nv1) have a reduced ability to defend themselves against grass shrimp, a native predator. In addition, secreted Nv1 can act indirectly in defense by attracting mummichog fish, which prey on grass shrimp. Here, we provide evidence at the molecular level of an animal-specific tritrophic interaction between a prey, its antagonist, and a predator. Last, this study reveals an evolutionary trade-off, as the reduction of Nv1 levels allows for faster growth and increased reproductive rates.


Assuntos
Anêmonas-do-Mar , Peçonhas , Animais , Reprodução , Evolução Biológica , Neurotoxinas/genética , Anêmonas-do-Mar/genética , Comportamento Predatório/fisiologia
13.
Toxins (Basel) ; 16(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393153

RESUMO

Cnidarians (corals, sea anemones, and jellyfish) produce toxins that play central roles in key ecological processes, including predation, defense, and competition, being the oldest extant venomous animal lineage. Cnidaria small cysteine-rich proteins (SCRiPs) were the first family of neurotoxins detected in stony corals, one of the ocean's most crucial foundation species. Yet, their molecular evolution remains poorly understood. Moreover, the lack of a clear classification system has hindered the establishment of an accurate and phylogenetically informed nomenclature. In this study, we extensively surveyed 117 genomes and 103 transcriptomes of cnidarians to identify orthologous SCRiP gene sequences. We annotated a total of 168 novel putative SCRiPs from over 36 species of stony corals and 12 species of sea anemones. Phylogenetic reconstruction identified four distinct SCRiP subfamilies, according to strict discrimination criteria based on well-supported monophyly with a high percentage of nucleotide and amino acids' identity. Although there is a high prevalence of purifying selection for most SCRiP subfamilies, with few positively selected sites detected, a subset of Acroporidae sequences is influenced by diversifying positive selection, suggesting potential neofunctionalizations related to the fine-tuning of toxin potency. We propose a new nomenclature classification system relying on the phylogenetic distribution and evolution of SCRiPs across Anthozoa, which will further assist future proteomic and functional research efforts.


Assuntos
Antozoários , Cnidários , Anêmonas-do-Mar , Animais , Antozoários/genética , Anêmonas-do-Mar/genética , Cnidários/genética , Neurotoxinas/genética , Cisteína/genética , Filogenia , Proteômica
14.
Toxins (Basel) ; 16(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393163

RESUMO

While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.


Assuntos
Anêmonas-do-Mar , Toxinas Biológicas , Animais , Anêmonas-do-Mar/genética , Peçonhas/genética , Toxinas Biológicas/genética , Transcriptoma , RNA
15.
Mar Drugs ; 22(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393042

RESUMO

The venoms of various sea anemones are rich in diverse toxins, which usually play a dual role in capturing prey and deterring predators. However, the complex components of such venoms have not been well known yet. Here, venomics of integrating transcriptomic and proteomic technologies was applied for the first time to identify putative protein and peptide toxins from different tissues of the representative sea anemone, Heteractis magnifica. The transcriptomic analysis of H. magnifica identified 728 putative toxin sequences, including 442 and 381 from the tentacles and the column, respectively, and they were assigned to 68 gene superfamilies. The proteomic analysis confirmed 101 protein and peptide toxins in the venom, including 91 in the tentacles and 39 in the column. The integrated venomics also confirmed that some toxins such as the ShK-like peptides and defensins are co-expressed in both the tentacles and the column. Meanwhile, a homology analysis was conducted to predict the three-dimensional structures and potential activity of seven representative toxins. Altogether, this venomics study revealed the venom complexity of H. magnifica, which will help deepen our understanding of cnidarian toxins, thereby supporting the in-depth development of valuable marine drugs.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Toxinas Biológicas , Animais , Peçonhas/metabolismo , Anêmonas-do-Mar/metabolismo , Proteômica/métodos , Peptídeos/genética , Peptídeos/metabolismo , Venenos de Cnidários/química
16.
Mar Pollut Bull ; 200: 116125, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359481

RESUMO

Phthalates are widely employed plasticizers blended to plastic polymers that, during plastic aging and weathering are prone to leach in the surrounding environment. Thus, phthalates were proposed to indirectly evaluate MPs contamination in marine environments, with still uncertain and scarce data, particularly for wildlife. This study investigates simultaneously microplastics (MPs) and phthalates (PAEs) occurrence in wild Actinia equina and Anemonia viridis, two common and edible sea anemone species. Both species had a 100 % frequency of MPs occurrence, with similar average concentrations. PAEs were detected in 70 % of samples, with concentrations up to 150 ng/g in A. equina and 144.3 ng/g for A. viridis. MPs and PAEs present in sea anemone tissues appear to reflect seawater plastic contamination conditions in the study area. Given the rapid biodegradation of PAEs, occurrence and concentrations of both these additives and their metabolites could be useful tracers of short-term plastic debris-biota interactions.


Assuntos
Ácidos Ftálicos , Anêmonas-do-Mar , Animais , Microplásticos , Plásticos
17.
Elife ; 132024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323609

RESUMO

BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Genoma , Expressão Gênica , Padronização Corporal/genética
18.
Proc Biol Sci ; 291(2017): 20231685, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38412969

RESUMO

Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemone Exaiptasia pallida (Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, 'defence' responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways-including NF-κB-does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands.


Assuntos
Dinoflagelados , Anêmonas-do-Mar , Animais , Simbiose/fisiologia , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Anêmonas-do-Mar/fisiologia , Fotossíntese , Transcriptoma , Dinoflagelados/fisiologia
19.
Anal Chem ; 96(10): 4120-4128, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412037

RESUMO

Efficient and accurate acquisition of cellular biomolecular information is crucial for exploring cell fate, achieving early diagnosis, and the effective treatment of various diseases. However, current DNA biosensors are mostly limited to single-target detection, with few complex logic circuits for comprehensive analysis of three or more targets. Herein, we designed a sea anemone-like DNA nanomachine based on DNA strand displacement composed of three logic gates (YES-AND-YES) and delivered into the cells using gold nano bipyramid carriers. The AND gate activation depends on the trigger chain released by upstream DNA strand displacement reactions, while the output signal relies on the downstream DNAzyme structure. Under the influence of diverse inputs (including enzymes, miRNA, and metal ions), the interconnected logic gates simultaneously perform logical analysis on multiple targets, generating a unique output signal in the YES/NO format. This sensor can successfully distinguish healthy cells from tumor cells and can be further used for the diagnosis of different tumor cells, providing a promising platform for accurate cell-type identification.


Assuntos
DNA Catalítico , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , DNA/química , DNA Catalítico/química , Lógica , Ouro , Computadores Moleculares
20.
Sci Data ; 11(1): 102, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253640

RESUMO

Deep-sea hydrothermal vents are usually considered as extreme environments with high pressure, high temperature, scarce food, and chemical toxicity, while many local inhabitants have evolved special adaptive mechanisms for residence in this representative ecosystem. In this study, we constructed a high-quality genome assembly for a novel deep-sea anemone species (Actinostola sp.) that was resident at a depth of 2,971 m in an Edmond vent along the central Indian Ocean ridge, with a total size of 424.3 Mb and a scaffold N50 of 383 kb. The assembled genome contained 265 Mb of repetitive sequences and 20,812 protein-coding genes. Taken together, our reference genome provides a valuable genetic resource for exploring the evolution and adaptive clues of this deep-sea anemone.


Assuntos
Genoma , Anêmonas-do-Mar , Animais , Ecossistema , Fontes Hidrotermais , Anêmonas-do-Mar/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...